NASA DART spacecraft before impact

DART is about to hit an asteroid

This illustration depicts NASA’s Double Asteroid Redirection Test (DART) spacecraft before impacting the Didymos binary asteroid system.Image credit: NASA/Johns Hopkins APL/Steve Gripen

Attempting to hit an asteroid is a daring and complex undertaking.

jet propulsion laboratory
The Jet Propulsion Laboratory (JPL) is a federally funded research and development center established in 1936. It is owned by NASA and managed by Caltech. The lab’s primary function is to build and operate planetary robotic spacecraft, but it also performs Earth-orbiting and astronomical missions. It also operates NASA’s Deep Space Network. JPL implements programs in planetary exploration, earth science, space-based astronomy, and technology development, while applying its capabilities to technical and scientific issues of national significance.

“data-gt-translation-attributes=”[{” attribute=””>JPL is there to assist with navigators, communications, and more.

NASA’s Double Asteroid Redirection Test (DART) mission has the challenging goal of crashing its spacecraft into a small asteroid on Monday, September 26. Its target is Dimorphos,  a small moonlet orbiting a larger asteroid by the name of Didymos. Although the asteroid poses no threat to Earth, this mission will test technology that could be used to defend our planet against potential asteroid or comet hazards that may be detected in the future.

Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, designed and leads the ambitious mission for Asteroid Didymos and Dimorphos DRACO

This image of the light from asteroid Didymos and its orbiting moonlet Dimorphos is a composite of 243 images taken by the Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO) on July 27, 2022. Credit: NASA JPL DART Navigation Team

Getting to Dimorphos

JPL’s navigation section is quite experienced at getting spacecraft to faraway locations accurately (for example: Cassini to Double Asteroid Redirection Test Illustration

Illustration of NASA’s DART spacecraft and the Italian Space Agency’s (ASI) LICIACube prior to impact at the Didymos binary system. Credit: NASA/Johns Hopkins, APL/Steve Gribben

Time and Space

JPL’s Center for Near Earth Object Studies (CNEOS), an element of NASA’s Planetary Defense Coordination Office (PDCO), was tasked with determining not only the location of Didymos in space to within 16 miles (25 kilometers), but also when Dimorphos would be visible – and accessible – from DART’s direction of approach.

Along with investigators at other institutions, members of CNEOS will study the plume of rock and regolith (broken rock and dust) ejected by the impact, as well as the newly formed impact crater and the movement of Dimorphos in its orbit around its parent asteroid. Led by JPL’s Steve Chesley, they will not only examine data and imagery from DART and LICIACube, but also data from space and ground-based telescopes.

Scientists think the impact should shorten the moonlet’s orbital period around the larger asteroid by several minutes. That duration should be long enough for the effects to be observed and measured by telescopes on Earth. It should also be enough for this test to demonstrate whether kinetic impact technology – impacting an asteroid to adjust its speed and therefore its path – could in fact protect Earth from an asteroid strike.

Important contributors among those Earth-based telescopes include NASA’s Deep Space Network, the array of giant radio telescope dishes that JPL manages. With radar observations led by JPL scientist Shantanu Naidu, the massive 70-meter (230-foot) dish of Deep Space Station 14 at the network’s Goldstone complex near Barstow, California, will begin observing the aftermath of the celestial collision about 11 hours after impact, when Earth’s rotation brings Didymos and Dimorphos into view of Goldstone. Data from the echoes bounced off the two space rocks should help determine what changes occurred in the moonlet’s orbit and may even provide some coarse-resolution radar images.

Of course, radio science is only part of the Deep Space Network’s role. The navigation teams depend on it as well because the network is the means by which NASA has been communicating with spacecraft at the Moon and beyond since 1963.

Didymos Asteroids

Asteroid 65803 Didymos is a binary near-Earth asteroid; the primary body has a diameter of around 780 m and a rotation period of 2.26 hours, whereas the Didymoon secondary body has a diameter of around 160 m and rotates around the primary at a distance of around 1.2 km from the primary surface in around 12 hours. Credit: ESA

More About the Mission

Johns Hopkins Applied Physics Laboratory (APL) manages the DART mission for NASA’s Planetary Defense Coordination Office (PDCO) as a project of the agency’s Planetary Missions Program Office. DART is the world’s first planetary defense test mission and will intentionally execute a kinetic impact into Dimorphos to slightly change its motion in space. While the asteroid does not pose any threat to Earth, the DART mission will establish that a spacecraft can autonomously navigate to a kinetic impact on a relatively small asteroid thus proving this is a viable technique to deflect an asteroid on a collision course with Earth if one is ever discovered. DART will reach its target on September 26, 2022.

ASI’s LICIACube mission is operated by Argotec with independent navigation provided by JPL, the University of Bologna, and Politecnico di Milano. LICIACube rode along with DART throughout launch and cruise and then was released on September 11, 15 days before DART’s impact. LICIACube’s mission focuses on imaging the results of the DART’s impact (the crater and ejecta plume) as well as the unimpacted side of Dimorphos.

Leave a Comment

Your email address will not be published.